- Browse
- » Planetary sciences
Planetary sciences
Author
Publisher
Cambridge University Press
Publication Date
2015.
Language
English
Description
Loading Description...
Table of Contents
From the Book - Updated second edition.
Preface to the first edition
Preface to the second edition
Preface to the updated second edition (2015)
1.1. Inventory of the solar system
1.1.1. Giant planets
1.1.2. Terrestrial planets
1.1.3. Minor planets and comets
1.1.4. Satellite and ring systems
1.1.5. Tabulations
1.1.6. Heliosphere
1.2. Planetary properties
1.2.1. Orbit
1.2.2. Mass
1.2.3. Size
1.2.4. Rotation
1.2.5. Shape
1.2.6. Temperature
1.2.7. Magnetic field
1.2.8. Surface composition
1.2.9. Surface structure
1.2.10. Atmosphere
1.2.11. Interior
1.3. Stellar properties and lifetimes
1.4. Formation of the solar system
2.1. The two-body problem
2.1.1. Kepler's laws of planetary motion
2.1.2. Newton's laws of motion, gravity
2.1.3. Orbital elements
2.1.4. Bound and unbound orbits
2.1.5. Interplanetary spacecraft
2.1.6. Gravitational potential.
2.2. The three-body problem
2.2.1. Jacobi constant, Lagrangian points
2.2.2. Horseshoe and tadpole orbits
2.2.3. Hill sphere
2.2.4. Distant planetary satellites and quasi-satellites
2.3. Perturbations and resonances
2.3.1. Regular and chaotic motion
2.3.2. Resonances
2.3.3. The resonance overlap criterion and Jacobi[]Hill stability
2.4. Stability of the solar system
2.4.1. Secular perturbation theory
2.4.2. Chaos and planetary motions
2.4.3. Survival lifetimes of small bodies
2.5. Orbits about an oblate planet
2.5.1. Gravitational potential
2.5.2. Precession of particle orbits
2.5.3. Torques upon an oblate planet
2.6. Tides
2.6.1. The tidal force and tidal bulges
2.6.2. Tidal torque
2.6.3. Tidal heating
2.7. Dissipative forces and the orbits of small bodies
2.7.1. Radiation pressure (micrometer grains)
2.7.2. Poynting[]Robertson Drag (small macroscopic particles)
2.7.3. Yarkovsky effect (meter[]ten-kilometer objects)
2.7.4. YORP torques (Rotation of asymmetric bodies).
2.7.5. Corpuscular drag (submicrometer dust)
2.7.6. Gas drag
2.8. Orbits about a mass-losing star
3.1. Energy balance and temperature
3.1.1. Thermal (blackbody) radiation
3.1.2. Temperature
3.2. Energy transport
3.2.1. Conduction
3.2.2. Convection
3.2.3. Radiation
3.3. Atmosphere in radiative equilibrium
3.3.1. Thermal profile
3.3.2. Greenhouse effect
3.4. Radiative transfer in a surface
4.1. Density and scale height
4.2. Thermal structure
4.2.1. Sources and transport of energy
4.2.2. Observations of thermal profiles
4.3. Atmospheric composition
4.3.1. Spectra
4.3.2. Line profiles
4.3.3. Observations
4.4. Clouds
4.4.1. Wet adiabatic lapse rate
4.4.2. Clouds on Earth
4.4.3. Clouds on other planets
4.5. Meteorology
4.5.1. Winds forced by solar heating
4.5.2. Wind equations
4.5.3. Horizontal winds
4.5.4. Storms
4.5.5. Observations: Bodies with surfaces
4.5.6. Observations: Giant planets.
4.6. Photochemistry
4.6.1. Photolysis and recombination
4.6.2. Photoionization: Ionospheres
4.6.3. Electric currents
4.6.4. Airglow and Aurora
4.7. Molecular and eddy diffusion
4.7.1. Diffusion
4.7.2. Eddy diffusion coefficient
4.8. Atmospheric escape
4.8.1. Thermal (Jeans) escape
4.8.2. Nonthermal escape
4.8.3. Blowoff and Impact erosion
4.9. History of secondary atmospheres
4.9.1. Formation
4.9.2. Climate evolution
4.9.3. Summary
5.1. Mineralogy and petrology
5.1.1. Minerals
5.1.2. Rocks
5.2. Cooling of a magma
5.2.1. Phases of the magma
5.2.2. Crystallization and differentiation
5.3. Surface morphology
5.3.1. Gravity and rotation
5.3.2. Tectonics
5.3.3. Volcanism
5.3.4. Atmospheric effects on landscape
5.4. Impact cratering
5.4.1. Crater morphology
5.4.2. Crater formation
5.4.3. Impact modification by atmospheres
5.4.4. Spatial density of craters
5.4.5. Comet SL9 Impacts Jupiter.
5.4.6. Mass extinctions
5.5. Surface geology of Individual bodies
5.5.1. Moon
5.5.2. Mercury
5.5.3. Venus
5.5.4. Mars
5.5.5. Satellites of Jupiter
5.5.6. Satellites of Saturn
5.5.7. Satellites of Uranus
5.5.8. Satellites of Neptune
6.1. Modeling planetary Interiors
6.1.1. Hydrostatic equilibrium
6.1.2. Constituent relations
6.1.3. Equation of state
6.1.4. Gravity field
6.1.5. Internal heat: sources and losses
6.2. Interior structure of the Earth
6.2.1. Seismology
6.2.2. Density profile
6.3. Interiors of other solid bodies
6.3.1. Moon
6.3.2. Mercury
6.3.3. Venus
6.3.4. Mars
6.3.5. Satellites of giant planets
6.4. Interior structure of the giant planets
6.4.1. Modeling the giant planets
6.4.2. Jupiter and Saturn
6.4.3. Uranus and Neptune
7.1. The Interplanetary medium
7.1.1. Solar wind
7.1.2. Modeling the solar wind
7.1.3. Maxwell's equations.
7.1.4. Solar wind[]Planet Interactions
7.2. Magnetic field configuration
7.2.1. Dipole magnetic field
7.2.2. Multipole expansion
7.3. Particle motions in magnetospheres
7.3.1. Adiabatic Invariants
7.3.2. Drift motions in a magnetosphere
7.3.3. Electric fields
7.3.4. Particle sources and sinks
7.3.5. Particle diffusion
7.4. Magnetospheric wave phenomena
7.4.1. General wave theory
7.4.2. MHD, plasma, and radio waves
7.4.3. Radio emissions
7.5. Magnetospheres of Individual bodies
7.5.1. Earth
7.5.2. Mercury
7.5.3. Venus, Mars, the Moon
7.5.4. Jupiter
7.5.5. Saturn
7.5.6. Uranus and Neptune
7.6. Generation of magnetic fields
7.6.1. Magnetic dynamo theory
7.6.2. Variability in magnetic fields
8.1. Basic classification and fall statistics
8.2. Source regions
8.3. Fall phenomena
8.4. Chemical and Isotopic fractionation
8.4.1. Chemical separation
8.4.2. Isotopic fractionation
8.5. Main components of chondrites.
8.6. Radiometric dating
8.6.1. Radioactive decay
8.6.2. Dating rocks
8.6.3. Extinct-nuclide dating
8.6.4. Time from final nucleosynthesis to condensation
8.6.5. Cosmic-ray exposure ages
8.7. Meteorite clues to planet formation
8.7.1. Meteorites from differentiated bodies
8.7.2. Primitive meteorites
8.7.3. Chondrule and CAI formation
8.8. Perspectives
9.1. Orbits
9.1.1. Asteroids
9.1.2. Trans-Neptunian objects, centaurs
9.2. Determination of physical properties
9.2.1. Radius and albedo
9.2.2. Shape
9.2.3. Regolith
9.3. Bulk composition and taxonomy
9.3.1. Asteroid taxonomy
9.3.2. Space weathering
9.3.3. Taxometric spatial distribution
9.3.4. TNO spectroscopy
9.4. Size distribution and collisions
9.4.1. Size distribution
9.4.2. Collisions and families
9.4.3. Collisions and rubble piles
9.4.4. Binary and multiple systems
9.4.5. Mass and density
9.4.6. Rotation
9.4.7. Interplanetary dust
9.5. Individual minor planets.
9.6. Origin and evolution of minor planets
10.1. Nomenclature
10.2. Orbits and reservoirs
10.2.1. Nongravitational forces
10.2.2. Oort cloud
10.2.3. Kuiper Belt
10.2.4. Orbits of comets and asteroids
10.3. Coma and tail formation
10.3.1. Brightness
10.3.2. Gas production rate
10.3.3. Outflow of gas
10.3.4. Ultimate fate of coma gas
10.3.5. Dust entrainment
10.3.6. Particle size distribution
10.3.7. Morphology of dust tails
10.4. Composition
10.4.1. Haser model
10.4.2. Excitation and emission
10.4.3. Composition of the gas
10.4.4. Dust composition
10.5. Magnetosphere
10.5.1. Morphology
10.5.2. Plasma tail
10.5.3. X-ray emissions
10.6. Nucleus
10.6.1. Size, shape, and rotation
10.6.2. Processing far from the Sun
10.6.3. Sublimation of Ices
10.6.4. Splitting and disruption
10.6.5. Structure of the nucleus
10.7. Comet formation
10.7.1. Constraints from chemistry
10.7.2. Dynamical constraints
11.1. Tidal forces and Roche's limit
11.2. Flattening and spreading of rings
11.3. Observations
11.3.1. Jupiter's rings
11.3.2. Saturn's rings
11.3.3. Uranus's rings
11.3.4. Neptune's rings
11.4. Ring[]Moon Interactions
11.4.1. Resonances
11.4.2. Spiral waves
11.4.3. Shepherding
11.4.4. Longitudinal confinement
11.5. Physics of dust rings
11.5.1. Radiation forces
11.5.2. Charged grains
11.5.3. Spokes in Saturn's rings
11.6. Meteoroid bombardment of rings
11.6.1. Accretion of Interplanetary debris
11.6.2. Ballistic transport
11.6.3. Mass supplied by satellite ejecta
11.7. Origins of planetary rings
11.8. Summary
12.1. Physics and sizes of planets, brown dwarfs, and low-mass stars
12.2. Detecting extrasolar planets
12.2.1. Timing pulsars and pulsating stars
12.2.2. Radial velocity
12.2.3. Astrometry
12.2.4. Transit photometry
12.2.5. Transit timing variations
12.2.6. Microlensing
12.2.7. Imaging
12.2.8. Other techniques
12.2.9. Explanet Charcterization
12.3
Observations of extrasolar planets
12.3.1. Pulsar planets
12.3.2. Radial velocity detections
12.3.3. Transiting planets
12.3.4. Planets orbiting pulsating stars
12.3.5. Microlensing detections
12.3.6. Multiple planet systems
12.4. Exoplanet statistics
12.5 Planets and life
12.6. SETI
12.7. Conclusions
13.2. Nucleosynthesis: A concise summary
13.2.1. Primordial nucleosynthesis
13.2.2. Stellar nucleosynthesis
13.3. Star formation: A brief overview
13.3.1. Molecular cloud cores
13.3.2. Collapse of molecular cloud cores
13.3.3. Observations of star formation
13.3.4. Observations of circumstellar disks
13.4. Evolution of the protoplanetary disk
13.4.1. Infall stage
13.4.2. Disk dynamical evolution
13.4.3. Chemistry in the disk
13.4.4. Clearing stage
13.5. Growth of solid bodies
13.5.1. Timescale constraints
13.5.2. Planetesimal formation
13.5.3. From planetesimals to planetary embryos
13.6. Formation of the terrestrial planets
13.6.1. Dynamics of the final stages of planetary accumulation
13.6.2. Accretion! heating and planetary differentiation.
13.6.3. Accumulation (and loss) of atmospheric volatiles
13.7. Formation of the giant planets
13.7.1. Disk Instability hypothesis
13.7.2. Core nucleated accretion
13.8. Planetary migration
13.8.1. Torques from protoplanetary disks
13.8.2. Scattering of planetesimals
13.9. Small bodies orbiting the Sun
13.9.1. Asteroid belt
13.9.2. Comet reservoirs
13.10. Planetary rotation
13.11. Satellites of planets and minor planets
13.11.1. Giant planet satellites
13.11.2. Formation of the Moon
13.11.3. Satellites of small bodies
13.12. Exoplanet formation models
13.13. Confronting theory with observations
13.13.1. Solar system's dynamical state
13.13.2. Composition of planetary bodies
13.13.3. Extrasolar planets
13.13.4. Conclusions.
Excerpt
Loading Excerpt...
Author Notes
Loading Author Notes...
More Details
Contributors
ISBN
9781107091610
Staff View
Loading Staff View.

